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Design of Waveguide-to-Orotron-Resonator
Transition with Modified Bethe Theory

G. Faby and K. Scḧunemann,Fellow, IEEE

Abstract— The modified Bethe theory is applied to the
waveguide-to-resonator transition, which is used for output
coupling in an orotron oscillator designed for operation at
94 GHz. The finite thickness of the coupling hole between
output waveguide and resonator is taken into account. The
approach results in an equivalent circuit, which describes the
reflection-type resonator, with respect to the output waveguide.
Its equivalent circuit parameters are given in closed-form
expressions. The calculated reflection coefficients are compared
to experimental results. The assumed single-mode operation in
the resonator is demonstrated by field-profile measurements.

Index Terms—Electromagnetic coupling, optical resonator,Q
measurements.

I. INTRODUCTION

OPEN resonators have been studied intensively in the past
[1], [2]. In the millimeter-wave range, the most important

application has been in the determination of electrical proper-
ties of dielectric materials [3], [4] due to the high quality ()
factor of a quasi-optical resonator. For these applications, the
change of the unloaded factor due to the characteristics of
the probe has to be measured. Since for this task the resonator
is only weakly coupled to the waveguide, there has been little
work on the tight coupling of open resonators. However, in the
last years, strongly coupled open resonators have gained more
interest due to their application in high-power tubes [5], [6].

This paper deals with an orotron resonator. The orotron
has been proposed [7] and developed [8] some time ago as
a promising (sub)millimeter-wave source with moderate-to-
medium output power levels.

The design of the cold cavity used in the orotron is very
important for optimum oscillator performance. Especially the
loaded factor can be utilized to achieve optimum efficiency.
Fig. 1 demonstrates this behavior, which has been presented
in [9]. Since the unloaded factor is fixed for a desired
working mode, the loaded factor can be adjusted varying
the parameters of the coupling hole. Although there are some
investigations on electrical tuning of the coupling during
operation by means of a semitransparent lower mirror [10],
the simplest way is to design the coupling hole knowing
the dependence of the resonator coupling on the geometric
parameters of the aperture.
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Fig. 1. Simulated efficiency of a 94-GHz orotron versus loadedQ factor [9].

(a)

(b)

Fig. 2. (a) Orotron resonator. (b) Coupling aperture.

We apply Bethe’s theory [11] for small coupling apertures,
which has been modified by Collin [12], to the reflection-type
orotron cavity shown in Fig. 2, in order to derive an equivalent
circuit. The finite thickness of the coupling hole is taken into
account by regarding the coupling hole as a circular waveguide
with length . The circuit parameters can be derived in closed
form if the field in the cavity is given by a single mode. This
assumption is confirmed by field-profile measurements in the
cold orotron resonator. Finally, some experimental results are
reported and compared with theory.

II. M ODIFIED BETHE THEORY

In Bethe’s theory of diffraction by small holes, the coupling
between a waveguide and a resonator is described by electric
and magnetic dipole moments at the position of the aperture
following the principle of equivalence. These dipole moments
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Fig. 3. Coupling by magnetic dipole moment.

are solely determined by the incident wave [11]. This approach
has been modified by Collin introducing reaction terms, which
describe the reduction of the dipole moments due to the
influence of the resonator and of the reflected wave in the
waveguide [12]. This theory has been applied to transmission-
type open resonators by Mongia [13] without considering the
finite thickness of the coupling aperture.

Due to the well-known field structure in a quasi-optical
resonator, the coupling between the resonator and a waveguide
is mainly given by tangential magnetic fields, since the normal
component of the electric field is much smaller than the
tangential magnetic field [14]. Considering the coupling hole
as a circular waveguide, the coupling between this waveguide
and the cavity can be described by the magnetic dipole moment

as follows:

(1)

where signifies magnetic field of the incident wave,
and are the reaction fields in the waveguide

and the cavity, respectively, and denotes dyadic magnetic
polarizability of the aperture. The transition from the coupling
hole to the resonator is closed by means of a conducting
magnetic wall, as shown in Fig. 3.

Since the transversal magnetic field of the exciting mode
in the rectangular waveguide only consists of an

-component, (1) can be reduced to the-components of the
dipole moment and the magnetic fields. The dyadic magnetic
polarizability can be rewritten as a constant. For a circular
coupling hole of radius , the magnetic polarizability is
given by . Hence

(2)

The magnetic field , due to the incident mode, can be
evaluated from the fundamental mode in the circular
waveguide. The transversal field can be derived using a
normalized scalar potential [12]:

(3)

in cylindrical coordinates with the normalization factor

(4)

Here, is the wavenumber and wave impedance in
free space, denotes the propagation constant of the
mode, and is the radius of the circular waveguide. is the
Bessel function of the first kind and first zero of . The

prime denotes differentiation with respect to the argument. The
transversal magnetic field of the incident wave is then given by

(5)

The sign denotes a wave propagating in the positive
-direction. Due to the magnetic conducting wall at the end

of the circular waveguide, the incident wave is completely
reflected. Thus, the total magnetic field produced by
the exciting wave at the center of the coupling hole can be
expressed as

(6)

The scattered magnetic field in the waveguide due to
the presence of the magnetic dipole moment is determined
by [12]

(7)

In (7), denotes the angular frequency and is the
magnetic permeability of vacuum. Substituting (5) in (7)
results in

(8)

The reaction term , which describes the reduction of
by the resonator field, can be expressed in terms of the

normalized eigenfunctions of the cavity following [12]:

(9)

In (9), signifies wavenumber at resonance,denotes the
unloaded factor, and the th normalized eigenfunction
of the resonator at the position of the coupling hole. The
eigenfunctions are normalized with respect to the volume
integral

(10)

The -component of the eigenfunctionis given by [14] to be

(11)

Here, signifies spot size of the fundamental
mode, and are the mode numbers in the- and -direction,
respectively. signifies distance between the mirrors, and

and are the Hermite polynomials of order and
, respectively. Since is much smaller than the radius of

curvature of the spherical mirror, the divergence of the phase
front can be neglected. Inserting (6), (8), and (9) into (2) results
in an expression for the reduced magnetic dipole moment:

(12)
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Fig. 4. Field-profile measurement setup.

where

III. RESONATOR FIELDS

The theory given in Section II is valid only for single-mode
operation, i.e., the field inside the cavity is well described by
just one eigenfunction. Considering the well-known equation
for the resonance frequency of a quasi-optical resonator [14]

(13)

this assumption holds for the fundamental mode.
For higher order modes, the modes are
degenerate. In (13), is the velocity of light, denotes the
transversal index of the resonator mode, andis given by

. denotes radius of curvature of the
spherical mirror.

The desired working mode in the orotron resonator is the
mode [8]. This should be the only mode in the

cavity close to resonance. In order to prove this assumption,
the field pattern in the cavity has been measured moving a
small obstacle through the cavity. The obstacle is built by
a small metallic ball fixed on a thin thread. The obstacle
perturbs the electric field inside the resonator, so that the stored
electric energy is reduced. This causes a shift in the resonance
frequency, which has been measured using the measurement
setup shown in Fig. 4. The shift in resonance frequency is a
function of the electric-field intensity at the position of the
obstacle [15].

The field-profile measurements have been performed at 94
GHz. The distance between the mirrors has been around
14.4 mm, corresponding to a transversal mode index .
The first resonance at this transversal-mode index belongs to
the fundamental mode, and the second resonance
is excited by the and modes. Since the coupling
hole is located at the center of the upper mirror, modes with
odd indexes in - or -direction are not excited.

In a first step, the field patterns of an ideal quasi-optical
resonator, i.e., without slow-wave structure in the plane mirror,
have been measured for these two resonances. Fig. 5 shows
the field profile versus obstacle position with respect to the
coordinate system in Fig. 2. The dashed lines give the field

Fig. 5. Field patterns without grating (—: measurement, - - - : theory).

Fig. 6. Field patterns with grating (—: measurement, - - -: theory).

intensity calculated from (11) and normalized to the field
intensity at the center of the resonator.

At the first resonance, the measured pattern agrees well with
the theoretical fundamental profile. At the second resonance,
the measured pattern is fitted well by a symmetrical super-
position of the and modes. As expected,
both modes are excited at this resonance. Hence, the theory
of Section II cannot be applied for higher order modes in an
empty quasi-optical resonator.

The same measurements have been performed for the
orotron resonator, i.e., a slow-wave structure is mounted
in the lower mirror. The slow-wave structure is designed for
negligible perturbation of the -mode profile. Results
have been plotted in Fig. 6.
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Fig. 7. Equivalent circuit of circular waveguide-to-resonator transition.

Fig. 8. Simple rectangular-to-circular waveguide transition.

At the first resonance, the Gaussian-shaped profile is
strongly perturbed due to diffraction losses at the corners
of the grating. In this experiment, the width of the grating has
been 7.3 mm corresponding to the position of the perturbations
in the field patterns. The dashed line denotes the unperturbed
profile of the fundamental mode.

The insertion of the grating changes the field profile strongly
at the second resonance. The dashed line gives the field
intensity of the desired mode. It can be seen that the
measured profile agrees very well with the theoretical one. Due
to the additional losses by diffraction, the undesired
mode is well suppressed. The perturbations in the side maxima
are due to the used spherical mirror, since the spherical shape
has been generated by small circular steps. Using a perfect
spherical mirror leads to an improved profile, even in the side
maxima.

The field-profile measurements verify the assumption of
single-mode operation in the orotron resonator, even if op-
erating at the higher order mode .

IV. EQUIVALENT CIRCUIT

The reflection coefficient of a short-circuited waveguide
with a magnetic dipole moment at the center of the waveguide
is given by [12] as

(14)

Substituting the reduced-dipole moment corresponding to (12)
into (14) results in a simple expression for the reflection
coefficient

(15)

In order to determine an equivalent circuit, the corresponding
input admittance can be calculated as

(16)

means wave admittance of the fundamental
mode in the circular waveguide. Fig. 7 shows the equivalent
circuit of the open resonator, which is well suited to illustrate
a formula of the same form as (16) [13]. The input admittance
at the right-hand side of plane is given by

(17)

where represents the resonant angular frequency of the
unloaded resonator, and is given by . denotes
the angular frequency close to resonance. A comparison be-
tween (16) and (17) results in closed-form expressions for the
elements of the equivalent circuit:

(18)

The value for the capacitor is chosen to equal unity. In order to
take the finite thickness of the coupling hole into account, the
input admittance at plane is transformed to plane using
transmission-line theory. Fig. 8 shows the complete transition.

The resulting reflection coefficient must be calculated
with respect to the wave admittance of the exciting -mode

:

(19)

where

(20)

With (19), the resonant behavior of the hole setup corre-
sponding to Fig. 2 is described by the geometrical parameters
of the resonator and of the coupling hole, and by the unloaded

factor of the open resonator. In order to use the equivalent
circuit for designing the coupling hole with a desired coupling,
either must be measured independently [13] or it must be
calculated.
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Fig. 9. Q factors for various mirror spacings (—: theory,�, �, ? : mea-
surement).

In this theory, the ohmic losses in the open cavity are calcu-
lated using skin-effect formulas [16] for a given conductivity
of the used material. Diffraction losses are neglected, since the
distance between the mirrors,, is kept small. The additional
ohmic losses due to the slow-wave structure are calculated
using a correction term [8].

V. MEASUREMENTS

The measurements have been performed with the vector
network-analyzer HP8510C extension to-band at 94 GHz.
The analyzer has been calibrated with respect to planein
Fig. 8. The mirror spacing has been controlled with an accu-
racy of 1.25 m by means of a stepped motor. Both mirrors are
made from pure oxid-free high-conductivity (OFHC) copper.
The coupling hole shows a diameter mm. The
length of the coupling hole has been measured mechanically
to be mm. The output waveguide is realized
as standard -band rectangular waveguide mm,

mm . For measurements with a slow-wave structure,
the plane mirror is completely replaced by another copper-
made mirror containing the grating.

The computation of the coupling has been done by evalu-
ating the frequency-dependent reflection coefficient at a
detuned–short position [17]. The coupling of a resonator is
defined by

(21)

where means external .
The validity of the theory has been tested by measuring the

resonant characteristics of an open resonator operating at the
fundamental mode. The results of these measurements have
been depicted in Fig. 9. The unloadedfactor , as well
as the loaded factor , and the external factor ,
are plotted versus mirror spacing. Each marker denotes the
measurement result for one transversal-mode index.

The simulated and measured data correspond very well.
This agreement has been obtained by assuming an electrical
conductivity of the mirrors, which is less than the theoretical
value by a factor of three. This fit has only been done once
for the first data point in Fig. 9. This modified conductivity
has been used in all of the following simulations presented in
this paper.

Fig. 10. Coupling for various mirror spacings Parameter: grating pitchp
(p = 0: no grating, —: theory,�, �, ?: measurement).

For small mirror spacings, increases linearly with ,
while the external factor increases with . These
dependencies have been derived in [13]. Hence, the coupling

corresponding to (21) can be described as .
This behavior is shown in Fig. 10. The couplingis plotted
versus mirror-spacing . The plots include data of different
arrangements. The rectangular markers denote the results of an
open resonator without slow-wave structure operating with the
fundamental mode. The triangles as well as the stars
give the data of the orotron resonator with different slow-wave
structures operating with the mode. The grating pitch
varies from 0.3 mm ( ) to 0.2 mm ( ). The grating with the
smaller pitch must have a larger surface. Hence, the ohmic
losses become larger, decreasing the unloadedfactor.

The coupling decreases with mirror spacing as expected.
Furthermore, the insertion of a slow-wave structure in the
lower mirror decreases the coupling due to additional losses.
The coupling can be predicted quiet well if the surface
conductivity of the used material is known.

Fig. 11 shows the measured and simulated frequency-
dependent reflection coefficient plotted in the Smith
chart for the orotron resonator operating with the
mode at 94 GHz. The circles denote the measured data. In
Fig. 11(a), the data are plotted referred to the measurement
plane corresponding to Fig. 8. In Fig. 11(b), both curves are
transformed to the detuned short position [17]. In Fig. 11(b),
the data agree very well, even in the complex plane, so that
both coupling and resonant behavior of the orotron cavity
are well described. The most conspicuous difference between
theory and measurement stems from the reactance far away
from resonance, as shown in Fig. 11(a). In this example,
the measured reactance is much smaller than the calculated
reactance. This deviation is probably due to the very simple
model for the rectangular-to-circular waveguide transition.
Using a more sophisticated model for this transition should
also result in better agreement for the coupling reactance.

According to [18], the coupling should be corrected by a
factor for large coupling holes, i.e., . Although the
coupling-hole radius in this experiment was rather large, the
agreement between measurement and theory is quite good.
This is due to taking the coupling-hole thickness into account.
If the coupling hole is rather thick in comparison to the propa-
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(a)

(b)

Fig. 11. (a) Complex reflection coefficient at plane of measurement and (b)
detuned short position (- - -: theory,�: measurement).

gation coefficient in the coupling-hole region, the reduction of
the coupling by the finite wall thickness is the most important
effect. For very thin coupling holes, other effects like the
influence of the waveguide walls [5] or large coupling-hole
diameters [18] must be taken into account.

VI. CONCLUSIONS

Bethe’s coupling theory for small holes has been modified
for an application to the millimeter-wave orotron resonator.
The finite thickness of the coupling hole has been taken
into account. The field profile in an open resonator has been
measured with and without slow-wave structures inside the
resonator. The coupling has been described using an equivalent
circuit, whose parameters are given in closed form. The
agreement between measurement and theory was good for
rather thick coupling holes. At millimeter waves, the thickness
of the coupling hole is the most important parameter. The
theory is suitable for the design of coupling holes in the
millimeter-wave region.
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